Source Locating of Spreading Dynamics in Temporal Networks

نویسنده

  • Qiangjuan Huang
چکیده

The topological structure of many real networks changes with time. Thus, locating the sources of a temporal network is a creative and challenging problem, as the enormous size of many real networks makes it unfeasible to observe the state of all nodes. In this paper, we propose an algorithm to solve this problem, named the backward temporal diffusion process. The proposed algorithm calculates the shortest temporal distance to locate the transmission source. We assume that the spreading process can be modeled as a simple diffusion process and by consensus dynamics. To improve the location accuracy, we also adopt four strategies to select which nodes should be observed by ranking their importance in the temporal network. Our paper proposes a highly accurate method for locating the source in temporal networks and is, to the best of our knowledge, a frontier work in this field. Moreover, our framework has important significance for controlling the transmission of diseases or rumors and formulating immediate immunization strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic-Sensitive centrality of nodes in temporal networks

Locating influential nodes in temporal networks has attracted a lot of attention as data driven and diverse applications. Classic works either looked at analysing static networks or placed too much emphasis on the topological information but rarely highlighted the dynamics. In this paper, we take account the network dynamics and extend the concept of Dynamic-Sensitive centrality to temporal net...

متن کامل

Locating the source of diffusion in complex networks by time-reversal backward spreading.

Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus rais...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Mapping spreading dynamics: From time respecting shortest paths to bond percolation

We propose a mapping of spreading dynamics to an ensemble of weighted networks, where edge weights represent propagation time delays. In this mapping, shortest paths in the weighted networks preserve the temporal causality of spreading. Furthermore, for efficient sampling, we construct a Markov Chain (Gibbs sampler) over elements of an ensemble of mapped weighted networks. Our framework provide...

متن کامل

Locating influential nodes via dynamics-sensitive centrality

With great theoretical and practical significance, locating influential nodes of complex networks is a promising issue. In this paper, we present a dynamics-sensitive (DS) centrality by integrating topological features and dynamical properties. The DS centrality can be directly applied in locating influential spreaders. According to the empirical results on four real networks for both susceptib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017